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Abstract

Natural convection by combined heat and mass transfer with opposing horizontal heat and solute gradients has been

investigated in an anisotropic porous cavity using the Darcy model. The porous medium is assumed to be both hy-

drodynamically and thermally anisotropic. The principal directions of the permeability tensor are taken oblique to the

gravity vector, while those of thermal and solutal diffusivity coincide with horizontal and vertical coordinate axes.

Special attention is given to understand the effect of anisotropic parameters on the existence of unsteady permanent

oscillations and multiple steady-state solutions. From the study of analytical solutions, which can be regarded as a

verification of the numerical results, simultaneously, it is found that there exists an interval of buoyancy ratio, INM ,
depending on the parametric values, in which multiple solutions exist. For the unsteady case a similar interval, INO, for
the buoyancy ratio has been observed numerically, in which permanent oscillations exist. Periodicity of the oscillation

changes drastically by changing the permeability of the medium. The results indicate that the maximum INM and INO
interval are attained at an orientation angle of h ¼ 45�. The local direction of the flow changes because of the variation

in the extent of the thermal and concentration layers, the opposite buoyant mechanism, and anisotropic parame-

ters. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Free convection due to combined buoyancy effect of

thermal and species diffusion in a fluid saturated porous

medium has received considerable attention in the last

two decades owing to its technical and geophysical ap-

plications. Starting with the work of Griffiths [1] and

Khan and Zebib [2], several studies have been conducted

to investigate the flow dynamics due to combined effect

of temperature and concentration buoyancies inside a

binary mixture. The growing volume of work in this area

is amply documented in the review work of Nield and

Bejan [3]. In the framework of the present paper, we

refer to the literature pertinent to double-diffusive con-

vection with opposing buoyancy forces. Recent investi-

gations on double-diffusive convection in rectangular,

fluid filled cavities (without a porous medium) with

opposing buoyancy forces due to temperature and con-

centration are presented by Xin et al. [4], and due to

horizontal temperature and concentration gradients by

Ghorayeb and Mojtabi [5]. The linear stability analysis

and the integration of full Boussinesq equation in closed

rectangular cavities for Lewis number Le ¼ 1:2 and

Prandtl number Pr ¼ 1, showed the existence of trans-

critical-bifurcation and construction of full branch of

stable and unstable solutions for the square cavity [4].

Further, it was found that with increasing cavity aspect

ratio, alternating transcritical and pitchfork bifurcation

can be seen. Ghorayeb and Mojtabi [5] reported that

the instability of the flow is driven by a single non-

dimensional parameter Rac � ðLe� 1Þ. In addition, they
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observed that a unique sub-critical solution with single

rotating cell exists in the sub-critical regime over the

aspect ratio ð¼ H=LÞ interval 1 < A < 2:5. For an aspect

ratio of A > 2:5, multiple steady convective solutions

were found for RaT < Rac (RaT and Rac are thermal and

solutal Rayleigh–Darcy number, respectively) depend-

ing on the initial conditions.

Beside the literature cited above, numerous investi-

gations are available on double diffusive convection with

opposing buoyancy forces in a viscous environment

[6,7]. In a porous cavity, however, little work is done. In

an investigation on double-diffusive natural convection

in a porous cavity due to opposing fluxes of heat and

mass prescribed at the vertical walls, Alavyoon et al. [8]

observed that for sufficiently large Rac, Le, and A, there
is a domain of buoyancy ratio, in which one encounters

oscillating convection. Outside this domain, the solution

approaches steady-state convection. Multiple steady-

state solutions were also reported for a given Rac, Le,
and N. Mamou et al. [9] studied the case of an inclined

porous slot and developed an analytical solution for a

parallel flow in the core region of the slot. It was also

shown [10] that this problem has multiple steady-state

solutions when the buoyancy forces act in opposite di-

rections. The stability analysis [11,12] of this problem

reveals the existence of a critical Rayleigh value above

which convection occurs. A numerical study of com-

bined heat and mass transfer through natural convection

Nomenclature

A aspect ratio¼H=L
C0 dimensional solutal concentration

C0
0 dimensional solutal concentration at refer-

ence point

C non-dimensional solutal concentration

D0
x solute diffusivity along vertical axis

D0
y solute diffusivity along horizontal-axis

D� solute diffusivity ratio

e1 permeability component ð¼K� sin2hþcos2hÞ
f1 permeability component ð¼ ð1� K�Þ sin h�

cos hÞ
g gravitational acceleration

g1 permeability component ð¼K�cos2hþsin2hÞ
2H height of cavity

ICðyÞ transverse function of concentration (ana-

lytically)

INM buoyancy interval where multi-solutions

exist.

INO buoyancy interval where oscillation exist.

IT ðyÞ transverse function of temperature (analyti-

cally)

K permeability tensor

K 0
x permeability along x� axis of tilted coordi-

nate system

K 0
y permeability along y� axis of tilted coordi-

nate system

K� ratio of principal components of K;K 0
x=K

0
y

2L width of cavity

Le Lewis number

N buoyancy ratio, bbCqC=bT qT
Nu Nusselt number

p0 dimensional pressure

p non-dimensional pressure

qT heat flux

qC solute flux

Q vertical unit vector

RaT Rayleigh number

SC analytical concentration gradient at any y

Sð0ÞC initial guess of SC
Sh Sherwood number

ST analytical temperature gradient at any y

Sð0ÞT initial guess of ST
t0 dimensional time

t non-dimensional time

T 0 dimensional temperature

T0 dimensional temperature at reference point

T non-dimensional temperature

V 0ðv; uÞ dimensional velocity vector

V ðv; uÞ non-dimensional velocity vector

y0; x0 dimensional space coordinates

y�; x� dimensional tilted space coordinates

y; x non-dimensional space coordinates

Greek symbols

a0
x thermal diffusivity along vertical axis

a0
y thermal diffusivity along horizontal axis

a� thermal diffusivity ratio, a0
x=a

0
y

b1 coefficient of solutal expansion

b2 coefficient of thermal expansion

Dt non-dimensional time-step

l dynamic viscosity

/p porosity

W stream function

q density of the fluid

q0 initial density

r heat-capacity ratio

h anisotropy orientation angle

Subscripts

NO buoyancy ratio related to oscillation

NM buoyancy ratio related to multi-solution
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adjacent to vertical surfaces in a fluid saturated porous

media was presented by Angirasa et al. [13]. Their results

support the validity of boundary layer analysis for high

Rayleigh number aiding flows and for those opposing

flows where one of the buoyant forces overpowers the

other. Recently, Mamou and Vasseur [14], using linear

and non-linear perturbation theories, have analyzed the

double diffusive instability in a horizontal rectangular

porous enclosure with impermeable vertical walls subject

to two sources of buoyancy forces. Depending on the

governing parameters, four different regimes, stable

diffusive, sub-critical convective, oscillatory, and augm-

entic direct regimes were found. Solution of full gov-

erning equations indicated that steady convection might

occur at Rayleigh number below the super-critical value,

leading to development of sub-critical flows. In the over-

stable regime, the existence of multiple solutions were

demonstrated. Linear stability analysis of constant

fluxes of heat and solute shows that an oscillatory re-

gime exists only when buoyancy ratio N < 0, and the

two inequalities Le > 1=e and RaT > eLe=ðeLe� 1Þ hold.
The quantity e and RaT are normalized porosity and

modified thermal Rayleigh number, respectively.

Except in few papers, in spite of wide applications in

transport of contaminant in saturated soils, migration of

moisture in fibrous insulation and nutrient transfer in

sea-bed, double-diffusive natural convection in aniso-

tropic porous medium has not received much attention.

Tyvand [15] considered a horizontal layer which retains

horizontal isotropy with respect to permeability, thermal

diffusivity and solute diffusivity. It was shown that there

is no difference on the stability diagram between aniso-

tropic porous media with thermally insulating solid

matrices and an isotropic one. The onset of double-

diffusive convection in a rotating anisotropic porous

layer is investigated by Patil et al. [16]. Double-diffusive

convection in a rectangular porous cavity, consisting of

two anisotropic porous layers with dissimilar hydraulic

and transport properties was studied by Nguyen et al.

[17] using Darcy model. Four different sets of boundary

conditions were imposed on the system, including aid-

ing diffusion, opposing diffusion and the two modes of

crossed diffusion. It was found that the overall heat and

mass transfer rates may or may not be sensitive to the

Rayleigh numbers. Bera et al. [18] considered double-

diffusive convection due to constant heating and cooling

on the two vertical walls, based on a non-Darcy model

with inclined permeability tensor. Their numerical in-

vestigations on heat and mass transfer with both aiding

and opposing flows reveal the significant effect of ori-

entation angle as well as anisotropic permeability on

flow rate, and on the overall heat and mass transfer

rates. Recently, the effect of throughflow on the stability

of double diffusive convection in a porous layer is in-

vestigated for different types of hydrodynamic boundary

conditions [19]. It was found that for a suitable choice of

parametric values, Hopf bifurcation occurs always prior

to direct bifurcation, and the throughflow alters the

nature of bifurcations.

However none of these works contain the vertical

walls maintained at constant fluxes of heat and mass.

A situation which occurs in oceanography, geophysics,

metallurgy and electro-chemistry. The present paper

deals with the theoretical and numerical investigation of

the double-diffusive natural convection in an anisotropic

porous cavity with opposing buoyancy forces in order to

understand the existence of multiple solutions and the

occurrence of oscillatory convection as observed in the

single component system. An outline of the paper is as

follows. The mathematical formulation is given in Sec-

tion 2. The analytical approach for steady-state solution

cum existence of multiple solutions is presented in Sec-

tion 3, followed by oscillatory convection in Section 4.

The concluding remarks are reported in Section 5.

2. Mathematical formulation

Consider a two-dimensional fluid saturated porous

enclosure of length 2L and the height 2H , as shown

schematically in Fig. 1. The top and bottom walls are

insulated, while equal but opposing horizontal temper-

ature and concentration gradients are applied on the

vertical walls. The medium is anisotropic in perme-

ability, which may be the consequence of a preferen-

tial orientation or asymmetric geometry of the grain in

geothermal system [20–22]. For example, drill-hole

samples in volcanic zones provide evidences for the ex-

istence of different permeabilities in horizontal and

Fig. 1. Schematic of the dimensional physical problem.
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vertical direction [20]. Also in loft insulation which

usually has lower permeability across the insulating

layer than in the perpendicular direction [22]. Anisot-

ropy finds also application in mathematical modeling in

geothermal systems such as fractured rocks. The spacing

of the discontinuities in the rocks is small in comparison

to the size of the reservoir, and consequently, the frac-

tured rock can be considered as a continuous medium

with anisotropic permeability. Hence, it is useful to

consider a general permeability tensor. The second-

order permeability tensor, K, is diagonal in the ðy�; x�Þ
coordinate system with the diagonal components K 0

y and

K 0
x. Since the media is anisotropic, therefore diffusion

properties are also anisotropic in nature [15,23]. How-

ever, because of our main focus (anisotropic perme-

ability) and in order to reduce the number of influencing

parameters, diffusivity tensors with principal directions

coinciding with y and x axes have been preferred.

We assume that the physical situation is described

by local equilibrium model equations. We consider the

steady-state flow induced by temperature gradient as

well as gradient of a solute dissolved in the fluid. The

thermo-physical properties of the fluid are assumed to

be constant. However, small changes in the density,

which is otherwise taken to be constant, are assumed to

cause buoyancy effects.

The governing equations for the flow as well as heat

and solute transfer in the Cartesian coordinate system

ðy0; x0Þ are given by

r 
 V0 ¼ 0; ð1Þ

V0 ¼ K
l

 f�rp0 � gq0½1þ bCðC0 � C0

0Þ

� bT ðT 0 � T 0
0Þ
Qg; ð2Þ

r
oT 0

ot0
þ r 
 ðV0T 0 � a0

ya 
 rT 0Þ ¼ 0; ð3Þ

/p

oC0

ot0
þ r 
 ðV0C0 � D0

yD 
 rC0Þ ¼ 0 ð4Þ

with boundary and initial conditions

oT 0

oy0
¼ �qT ;

oC0

oy0
¼ �qC ; v0 ¼ 0 at y0 ¼ �L; ð5Þ

oT 0

ox0
¼ 0;

oC0

ox0
¼ 0; u0 ¼ 0 at x0 ¼ �H ; ð6Þ

T 0 ¼ T 0
0; C0 ¼ C0

0; V0 ¼ 0 at t0 ¼ 0: ð7Þ

In the above equations, V0 is a two-dimensional velocity

vector ðv0; u0ÞT, r is the gradient operator in the ðy0; x0Þ
coordinate system, T 0 is the temperature, C0 is the con-

centration, p0 is the pressure, t0 is the time, /p is the

porosity, r is the heat capacity ratio, g is the gravita-

tional acceleration, qT and qC are heat and solute fluxes,

and Q
T ¼ ð0; 1Þ, is the vertical unit vector.

The second-order tensors of permeability, K, thermal

diffusivity, a, and mass diffusivity, D, can be written in

the ðy0; x0Þ coordinate system as

K ¼ K 0
y
e1 f1
f1 g1

� �
; a ¼ 1 0

0 a�

� �
; D ¼ 1 0

0 D�

� �
;

where

e1 ¼ K� sin2 h þ cos2 h; g1 ¼ K� cos2 h þ sin2 h;

f1 ¼ ð1� K�Þ sin h cos h;

K� ¼ K 0
x=K

0
y ; a� ¼ a0

x=a
0
y ; D� ¼ D0

x=D
0
y :

Non-dimensionalizing the variables as y ¼ y0=L, x ¼
x0=L, v ¼ Lv0=D0

y , u ¼ Lu0=D0
y , T ¼ ðT 0 � T 0

0Þ=qT L, C ¼
ðC0 � C0

0Þ=qCL, p ¼ K 0
yp

0=lD0
y , t ¼ D0

y t
0=L2, introducing

stream function, Wðv ¼ �oW=ox; u ¼ oW=oyÞ, and elimi-

nating pressure from Eq. (2), then Eqs. (2)–(4) may be

rewritten as

g1
o2W
ox2

þ 2f1
o2W
oxoy

þ e1
o2W
oy2

¼ RaT
oT
oy

�
� N

oC
oy

�
; ð8Þ

r
oT
ot

þr 
 ðVT � Lea 
 rT Þ ¼ 0; ð9Þ

/p

oC
ot

þr 
 ðVC � D 
 rCÞ ¼ 0: ð10Þ

In the above equations, RaT ¼ ðK 0
xgbT qT L

2q0=lD
0
yÞ is the

Rayleigh–Darcy number, N ¼ bCqC=bT qT is the buoy-

ancy ratio, Le ¼ a0
y=D

0
y is the Lewis number, A ¼ H=L is

aspect ratio. The non-dimensional boundary and initial

conditions are

w ¼ 0;
oT
oy

¼ �1;
oC
oy

¼ �1 at y ¼ �1; ð11Þ

w ¼ 0;
oT
ox

¼ 0;
oC
ox

¼ 0 at x ¼ �A: ð12Þ

T ¼ 0; C ¼ 0; W ¼ 0 at t ¼ 0: ð13Þ

The rate of heat and solute transfer along the wall is

determined from the temperature and concentration

field, respectively. The overall Sherwood and Nusselt

numbers are given by

Sh ¼ 2A
1
2

R A
�A½ðCÞy¼�1 � ðCÞy¼1
dx

;

Nu ¼ 2A
1
2

R A
�A½ðT Þy¼�1 � ðT Þy¼1
dx

:

ð14Þ

3. Existence of multiple solutions

3.1. Closed form solutions

For large aspect ratio, the momentum, heat and mass

balance in the enclosure can be represented by a slow
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progression towards a steady state, and the tempera-

ture and concentration fields become linear and stably

stratified in the vertical direction. This implies that

velocity is a function of y only. Furthermore, tempera-

ture and concentration can be decomposed into a

linearly varying longitudinal part and an unknown

transverse function, i.e., T ¼ ST xþ IT ðyÞ, and C ¼ SCxþ
ICðyÞ. Under these assumption, an analytical solution for

steady state can be obtained.

Using the above assumptions in Eqs. (8)–(10) yield

(upon integration of (8) with respect to y)

e1
dW
dy

¼ RaTðIT � NICÞ þ Const:; ð15Þ

ST
dW
dy

� Le d
2IT
d2y

¼ 0; ð16Þ

SC
dW
dy

� d2IC
d2y

¼ 0: ð17Þ

Note that by solving Eqs. (15)–(17) with their corre-

sponding boundary conditions (11) and (12), one can

determine the unknown functions dW=dy, ICðyÞ, and

IT ðyÞ in terms of SC , ST , and three other integration

constants. The integral conditions [24] needed for this

procedure are given in Appendix A.

Replacing dW=dy from (17), inserting it in (15), de-

riving it twice, and eliminating d2IT =dy2, one obtains

d4IC
dy4

� X2 d
2IC
dy2

¼ 0; ð18Þ

with

X2 ¼ RaT
ST � NSC Le

e1Le

� �
: ð19Þ

Using boundary conditions (11) and (12) and further

simplifications given in Appendix A, the final set of Eqs.

(15), (16), and (18) can be solved to obtain ICðyÞ, dW=dy
and IT ðyÞ, which are functions of SC and ST . Depending

on whether the quantity X is real, imaginary or zero,

different expressions for SC and ST are obtained, and

have been solved numerically by multi-variable New-

ton–Raphson method.

3.1.1. Real-valued X
If ðST � NSC LeÞ > 0, X (Eq. (19)) is real. The solution

of the Eqs. (15), (16) and (18) is

ICðyÞ ¼ � ð1þ B2Þ
X coshðXÞ sinhðXyÞ þ B2y; ð20Þ

dW
dy

¼ �ð1þ B2ÞX
sinhðXyÞ
SC coshðXÞ ; ð21Þ

IT ðyÞ ¼ � ST
SC Le

� �
ICðyÞ þ

ST
SC Le

�
� 1

�
y ð22Þ

with

B2 ¼ ðSC Le� ST Þ=ðST � SCN LeÞ:

Upon substitution of IC , dW=dy and IT in the Eqs. (A.6)

and (A.7), the concentration and the temperature gra-

dients along the x-axis, SC and ST , may be obtained by

solving the coupled equations

D�S2C �
ð1þ B2Þ2

ð1þ coshð2XÞÞ
sinhð2XÞ

2X

�
� 1

�

þ B2ð1þ B2Þ 1

�
� tanhX

X

�
¼ 0; ð23Þ

ST þ
ð1þ B2ÞðSCLe� ST Þ
S2CðD� � a�Le2Þ

� �
1

�
� tanhX

X

�
¼ 0: ð24Þ

Finally, the overall heat and mass transfer, i.e., Nusselt

and Sherwood number, can be calculated by inserting SC
and ST into Eq. (14) in the form

Sh � 2

ICð�1Þ � ICðþ1Þ ¼
X

ð1þ B2Þ tanhX � B2X
; ð25Þ

Nu � 2

IT ðþ1Þ � IT ð�1Þ ¼
LeSC Sh

ST þ LeSC Sh� ST Sh
: ð26Þ

3.1.2. Imaginary-valued X
If ðST � NSC LeÞ < 0, X will be an imaginary quantity

given by X ¼ xi with i ¼
ffiffiffiffiffiffiffiffiffiffi
ð�1Þ

p
. Replacing this value in

Eqs. (20)–(22) yields

IC ¼ � ð1þ B2Þ
x cosðxÞ sinðxyÞ þ B2y; ð27Þ

dW
dy

¼ ð1þ B2Þx
sinðxyÞ
SC cosðxÞ ; ð28Þ

IT ðyÞ ¼ � ST
SC Le

� �
ICðyÞ þ

ST
SC Le

�
� 1

�
y: ð29Þ

The constants SC and ST may than be calculated from

the set of two coupled equations

D�S2C �
ð1þ B2Þ2

ð1þ cosð2xÞÞ
sinð2xÞ
2x

�
� 1

�

þ B2ð1þ B2Þ 1

�
� tanx

x

�
¼ 0; ð30Þ

ST ¼ � ð1þ B2ÞðSC Le� ST Þ
S2CðD� � a�Le2Þ

� �
1

�
� tanx

x

�
; ð31Þ

and the corresponding heat and mass transfer ratio by

Nu � 2

IT ðþ1Þ � IT ð�1Þ ¼
LeSC Sh

ST þ LeSC Sh� ST Sh
; ð32Þ

Sh � 2

ICð�1Þ � ICðþ1Þ ¼
x

ð1þ B2Þ tanx � B2x
: ð33Þ
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3.1.3. Zero-valued X
If ðST � NSC LeÞ ¼ 0, X becomes zero. In this case,

the ratio between ST and SC depends on the values of N
and Le, solely. Once SC is determined, ST can be derived

directly from the above condition. The corresponding

solution to the Eqs. (15), (16) and (18) is

IC ¼ ð1� NÞ
2

�
� SC RaT

e1

y3

3

�
� y

��
� y; ð34Þ

IT ¼ NIC � ð1� NÞy; ð35Þ

dW
dy

¼ �RaT
e1

ð1� NÞy: ð36Þ

Substituting Eqs. (34) and (36) into the integral equation

(A.7) yields

SC ¼ 5RaTð1� NÞe1
15D�e21 þ 2Ra2Tð1� NÞ

2
; ð37Þ

ST ¼ 5NLeRaTð1� NÞ
e1ð15D� þ 2Ra2Tð1� NÞ

2Þ
: ð38Þ

Finally, substituting IC, IT , and oW=oy into (A.6) gives

the third degree polynomial for N in the form of

2

15
ð1� NÞ3Ra2T þ ð1� Na�Le2Þe21 ¼ 0: ð39Þ

The real-valued zeros of this polynomial can be inserted

into Eqs. (37) and (38) to calculate SC and ST which read

Nu � Sh
N þ ð1� NÞSh ; ð40Þ

Sh � 3e1
3e1 � SC RaTð1� NÞ

: ð41Þ

3.2. Boundary layer approximation

Further simplification of the analytical solution may

be achieved for special cases where temperature and

concentration have similar profiles, and are of boundary

layer type, i.e. eX � 1 (say X > 3Þ, D� ¼ a� and Le ¼ 1.

For y in the range of �16 y6 1, one obtains

sinhðXyÞ= coshX � e�Xð1�yÞ � e�Xð1þyÞ � G1 � G2 with

maxðG1jy¼þ1;G2jy¼�1Þ ¼ 1 and minðG1jy¼�1;G2jy¼þ1Þ ¼
e�2X ! 0.

Therefore, Eqs. (20) and (21) may be rewritten as

ICðyÞ � � 1þ B2

X
e�Xð1�yÞ þ B2y; ð42Þ

uðyÞ � � ð1þ B2ÞX
SC

e�Xð1�yÞ: ð43Þ

The upper and lower signs are valid in the y � �1 and

y � 1 boundary layers, respectively. According to our

assumption, 1=X is the boundary layer thickness [25]

where X2 > 9, i.e.

RaTðST � SCN LeÞ=e1Le > 9:

Since thermal and solutal diffusivity ratios are equal,

and the buoyancy ratio, N , lies in the range of 0 <
N < 1, Eq. (24) leads to SC ¼ ST and B2 ¼ 0. Substitut-

ing SC and B2 into Eqs. (23) and (19), one obtains

ST � ð2XD�Þ�1=2
and X � ð2D�Þ�1=5 RaTð1ð � NÞe1Þ�2=5

;

which leads to

SC ¼ ST � ð2D�Þ�2=5 RaTð1
�

� NÞe�1
1

	�1=5
: ð44Þ

It should be noted that the boundary layer approxima-

tion enables one to obtain an explicit form of the ve-

locity, temperature, and concentration. Therefore, under

these circumstances, no multi-solutions will occur.

3.3. Effect of different parameters on multi-solutions

As shown in Sections 3.1.1–3.1.3, different equations

for SC and ST may be derived depending on X. The

distribution of velocity ðuÞ, temperature ðT Þ, and con-

centration ðCÞ is known when SC and ST are calculated.

For a specific choice of RaT, Le, K�, h, D�, a�, and N, the

profiles of T, and C are calculated and displayed (see

Fig. 2) for two different buoyancy ratios at the center

line ðx ¼ 0Þ. As can be seen, multiple solutions exist. The

question of multiple solutions arise when two buoyancy

forces are of comparable size. This implies that in other

cases, the system possesses a unique steady-state solu-

tion for any arbitrary set of parameters. Hence, it is

interesting to find out the range of N (in the following

referred to as INM Þ in which one may encounter multi-

solutions. For each set of input parameters and a specific

N, one has to obtain SC and ST using multi-variable

Newton–Raphson method which involves initial guess

Sð0ÞC and Sð0ÞT . Because of the sensitivity of the solution to

the initial guess, all possible solutions of SC and ST are

found in the following manner.

(i) First, a set of different parameters (Le, RaT, K�,

D�, a�, and h, and a starting N) was fixed.

(ii) An initial range for Sð0ÞC and Sð0ÞT , (for exam-

ple between )2 to +2 in steps of 0.5) was taken.

The number of multi-solutions were identified and

counted.

(iii) The step size was now refined in order to exam-

ine whether or not additional and different solu-

tions exist.

(iv) If additional solutions were found, further step

refinements were carried out to find an optimal step

size.

(v) With this step size, the initial range of Sð0ÞC and

Sð0ÞT has been enlarged and checked whether or not

new solutions exist.

(vi) If yes, further enlargements were undertaken

otherwise the program was terminated.
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(vii) At this stage, the buoyancy ratio, N, were

increased in small steps (0.05), and the steps

(i)–(vi) were repeated for finding possible multi-

solutions.

From our rigorous numerical experiments, it was

found that all possible multi-solutions may be captured

when �56 Sð0ÞC , Sð0ÞT 6 5 (with steps of 0.1) and 0:26
N 6 3:2. In the present study, following ranges for the

input parameters have been considered: 106RaT 6
1000, 106 Le6 100, 0:16K�

6 10, 15�6 h6 90�, 0:26
a�

6 5, and 0:26D�
6 5. The interval of INM in which

multi-solutions exist are shown in Table 1 for different

input parameters studied. In what follows, influence of

different parameters on INM will be discussed.

3.3.1. Effect of Rayleigh number

As can be seen from Table 1 for isotropic media

(rows 4–6), an increase in RaT is to increase the length of

INM . This conclusion, however, cannot be made for an

anisotropic medium, which may be observed from the

rows 1–3 and 7–9. The above phenomena can be ex-

plained in the following manner. We first like to recall

the important definition of N, RaT and their conse-

quences. Note that N is the ratio of solutal buoyancy

force to thermal buoyancy force. Because N is kept

Fig. 2. Different profiles of temperature and concentration along x ¼ 0, for (a) N ¼ 0:5, and (b) N ¼ 1:5 with RaT ¼ 200, Le ¼ 10,

a� ¼ 1, D� ¼ 1, K� ¼ 0:1, and h ¼ 45�.
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constant, increasing RaT enhances both the thermal and

solutal buoyancy forces, indirectly. Further, the Bous-

sinesq approximation and the boundary conditions, as

formulated here, imply that the thermal buoyancy force

acts vertically upwards whereas the solutal buoyancy

force is aligned with the direction of gravity. Thus,

under the present thermo-solutal boundary conditions,

solute stabilizes the vertical density gradient, while heat

is destabilizing it, and as a consequence, the flow con-

figuration inside the cavity depends on the magnitude

and direction of these forces. For relatively week flow,

our numerical experiments showed (results are not

shown) that the increase of thermal buoyant force ex-

ceeds the increase of solutal buoyancy force with in-

creasing RaT provided the medium is isotropic, and the

thermal diffusivity of the medium is greater than the

solutal diffusivity. Therefore, under this circumstance,

both the buoyancy forces will remain of comparable size

for relatively larger value of N, leading to an extension

of upper limit of INM interval, and corresponding lower

limit of INM will shift to a higher value. In the case of an

anisotropic porous medium, the effective influence of

RaT on the thermal and solutal buoyancy forces depends

on the direction as well as magnitude of the larger per-

meability, and takes place in a complex manner. For

example, when the larger permeability is obliqued by 45�
with the gravity direction, and the magnitude is 10 times

of that the same an isotropic one (i.e., h ¼ 45�, and

K� ¼ 0:1), an increase of RaT from 10 to 100 changes the

lower limit of INM , from 0.9 to 0.5. It implies that for

RaT ¼ 100, two buoyancy forces remain of comparable

size even for N ¼ 0:5. However, when RaT is further

increased from 100 to 1000, the lower limit of INM is

increased. Therefore, because the upper limit of INM does

not change, while the lower limit is increased, both the

forces remain of comparable in smaller range of N. In

addition, it can be seen from the rows 7–9 of Table 1

that as permeability in the horizontal direction is re-

Table 1

Effect of different parameters on the range of buoyancy interval in which multiple solutions exist, INM (from analytical solutions)

RaT K� Le h a� D� INM

1 10 0.1 10 45� 1 1 [0.9 2.4]

2 100 0.1 10 45� 1 1 [0.5 2.4]

3 1000 0.1 10 45� 1 1 [0.9 2.4]

4 10 1 10 45� 1 1 [0.6 2.1]

5 100 1 10 45� 1 1 [0.8 2.4]

6 1000 1 10 45� 1 1 [0.8 2.4]

7 10 5 10 45� 1 1 [1.4 2.8]

8 100 5 10 45� 1 1 [1.1 2.3]

9 1000 5 10 45� 1 1 [0.8 2.4]

10 100 0.1 10 15� 1 1 [0.7 2.4]

11 100 0.1 10 45� 1 1 [0.5 2.4]

12 100 0.1 10 75� 1 1 [1.1 2.4]

13 100 10 10 15� 1 1 [0.8 2.2]

14 100 10 10 30� 1 1 [0.8 2.4]

15 100 10 10 45� 1 1 [0.6 2.3]

16 100 10 10 60� 1 1 [0.7 2.2]

17 100 10 10 75� 1 1 [0.6 2.2]

18 100 10 10 90� 1 1 [0.5 1.9]

19 100 0.1 20 45� 1 1 [0.8 2.6]

20 100 0.1 30 45� 1 1 [0.3 2.7]

21 100 0.1 50 45� 1 1 [0.5 2.85]

22 100 0.1 100 45� 1 1 [0.2 2.9]

23 100 0.1 10 45� 0.2 1 [1.1 1.9]

24 100 0.1 10 45� 5 1 [1.1 2.6]

25 100 0.1 10 45� 1 0.2 [1.1 2.7]

26 100 0.1 10 45� 1 5 [1.1 1.9]

27 100 10 10 45� 0.2 1 [0.8 1.9]

28 100 10 10 45� 5 1 [0.5 2.6]

29 100 10 10 45� 1 0.2 [0.5 2.6]

30 100 10 10 45� 1 5 [0.7 1.2]

31 1000 0.1 100 15� 1 1 [0.5 3.2]
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duced by five times from that of an isotropic one, en-

hancement of flow strength via RaT changes the lower

and upper limit of INM . All this implies that, in general,

enhancement of the flow strength through an increase of

RaT may enlarge, reduce, or shift the INM interval.

3.3.2. Effect of Lewis number

Table 1 clearly shows that an increase in Le is to

increase the upper limit, and decrease the lower limit of

INM . Note that Le is the ratio of thermal to solutal dif-

fusivity along the horizontal direction. Since RaT is

constant, increase of Le implies that thermal diffusiv-

ity over-weighs the solutal one, and the concentration

boundary layer becomes thinner, which, in turn, en-

hances the solutal gradient near the vertical walls. As a

consequence, for a fixed N, the overall solute transfer is

enhanced (see Fig. 3). To maintain the optimum com-

parability of the two buoyancy forces, the lower limit of

INM has to be reduced. For any N ð< 1Þ, this process

continues up to a certain value of Le where optimum

comparability of the two forces is attained. After that,

both the forces move asymptotically towards constant

magnitudes. As a result, unique solution is guaranteed

since an increase in Le will not affect the length of INM .
In the case of N > 1, enhancement of Le increases the

upper limit of INM , which may be as a consequence of the

complex interaction between buoyancy forces and un-

equal extent of the two diffusion processes.

3.3.3. Effect of permeability ratio

Permeability of the media acts as a conductivity of

the fluid flow, therefore, it measures the flow strength of

the medium. In general, low permeability characterizes

weak flows, whereas, high permeability characterizes

strong ones. Hence, comparability of the two buoyancy

forces can also be characterized by permeability of the

media. As demonstrated in Table 1, for h ¼ 45� and

K� ¼ 0:1, the above forces were of comparable size for

INM ¼ ½0:5 2:4
. As K� increases from 0.1 to 5 (which is

achieved by reducing K 0
yÞ, the sustenance of the com-

parability of the two forces reduces to the range of

INM ¼ ½1:12:3
. Further reduction of the permeability (by

increasing K� from 5 to 10) enlarges the INM interval

from [1.1 2.3] to [0.6 2.3]. Similar phenomena can also be

seen from the complete numerical solution of Eqs. (8)–

(10). Fig. 4(a)–(c) show the effect of permeability ratio

on the stream lines, temperature and concentration

contour lines for RaT ¼ 100, N ¼ 0:6, A ¼ 6, Le ¼ 20,

a� ¼ 5, D� ¼ 5 and h ¼ 60�. As can be seen from Fig.

4(a)–(c) for K� ¼ 0:1, 1 and 10, both the pattern as well

as the magnitude of T and C undergo drastic changes.

For w however, only quantitative changes were ob-

served. Comparison of T for an isotropic ðK� ¼ 1Þ me-

dium with an anisotropic one having high permeability

ðK� ¼ 0:1Þ demonstrates that although the magnitudes

remain unchanged, the patterns differ. An important

finding is that enhancement of permeability ratio re-

duces the flow strength and temperature but increases

the concentration. From Fig. 4(b) and (c) one may

conclude that there exist a K� between 1 and 10 for

which C and T become of comparable magnitude. We

also investigated the response of the system to an in-

crease of K�, and found that the number of distinct so-

lutions reduces drastically by reducing the permeability

of the medium (not shown explicitly).

3.3.4. Effect of orientation angle

Evidently from Table 1, the impact of orientation

angle, h, on INM is significant for porous media with both

high ðK� > 1Þ and low ðK� < 1Þ permeability ratios. As

can be seen from Table 1, the maximum length of INM is

attained at h ¼ 45�. The underlying physics can be ex-

plained with the help of the relation between K�; h, and
their impact on the flow convection. From the definition

of permeability tensor K, it is clear that for K� > 1, an

increase of h from 0� to 90� will reduce the total per-

meability in the main flow direction. Therefore, a re-

duction of flow strength is expected and is displayed in

Fig. 5(a). Note that this figure is obtained by solving

Eqs. (8)–(10). Simultaneously, it is also evident from

Fig. 5(a)–(c) that, even though the convection is re-

duced as h moves from 45� to 75�, the maximum values

of both the temperature and concentration profiles be-

come of almost similar size at h ¼ 45�. Hence, it can be

pointed out that, first, the buoyancy forces depend in-

directly on the direction and magnitude of the maximum

permeability, and the direction of the main flow; second,

Fig. 3. Variation of Nusselt ðNuÞ and Sherwood ðShÞ numbers

with Lewis (Le) number for N ¼ 0:1, RaT ¼ 100, K� ¼ 0:1,

h ¼ 45�, a� ¼ 1 and D� ¼ 1.
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although the convective flow can be further reduced by

rotating the permeability tensor, the two buoyancy

forces may not remain comparable for relatively smaller

range of INM .

3.3.5. Effect of thermal and solutal diffusivity ratios

In the present problem there are two different types

of diffusivity ratios: (i) thermal diffusivity a� and (ii)

solutal diffusivity D�. Thermal diffusivity ratio deter-

Fig. 5. Effect of orientation angle ðhÞ on: (a) stream-function ðwÞ, (b) temperature ðT Þ, and (c) concentration ðCÞ. For all cases: A ¼ 6,

N ¼ 0:6, RaT ¼ 100, Le ¼ 20, K� ¼ 10, a� ¼ 5 and D� ¼ 5.

Fig. 4. Effect of permeability ratio ðK�Þ on: (a) stream function ðwÞ, (b) temperature ðT Þ, and (c) concentration ðCÞ. For all cases:

A ¼ 6, N ¼ 0:6, RaT ¼ 100, Le ¼ 20, h ¼ 60�, a� ¼ 5 and D� ¼ 5. Calculations for these figures are obtained from solving Eqs. (8)–(10).
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mines the relative extent of the thermal diffusivity along

the vertical direction compared to horizontal one. Sim-

ilarly, the solutal diffusivity ratio measures the same for

the solutal diffusivities. For a fixed Le, an increase of a�

is due to an enhancement of thermal diffusivity in the

vertical direction, which in turn, weakens the tem-

perature profile, and reduces the overall heat transfer.

However, depending on the permeability in the main

flow direction, the overall solute transfer may decrease

or increase with increasing a� (see Fig. 6). As can be

observed, for K� ¼ 10 and N ¼ 0:1, an increase in a�

decreases the overall heat transfer, whereas, the overall

solute transfer is increased. This in turn, strengthens the

solutal buoyancy force and weakens the thermal buoy-

ancy force. Therefore, to maintain the optimum com-

parability of these two forces the lower limit of INM
has to be reduced as a� increases. Comparing rows 27,

15, and 28 of Table 1 demonstrates this fact. It also

shows that the upper limit of INM increases with in-

creasing a�, which may be the consequence of the com-

plex interaction of buoyancy forces and diffusivity of the

medium.

The effect of solutal diffusivity ratio on INM is

also included in Table 1. It shows that an increase of

Fig. 6. Variation of Nusselt (Nu) and Sherwood (Sh) number

with thermal diffusivity ratio, a� for N ¼ 0:1, RaT ¼ 100, Le ¼
10, h ¼ 45� and D� ¼ 1.

Fig. 7. Variation of Nusselt (Nu) and Sherwood (Sh) number

with solutal diffusivity ratio, D� for N ¼ 0:1, RaT ¼ 100, Le ¼
10, h ¼ 45� and a� ¼ 1.

Table 2
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D� (achieved by increasing D0
xÞ reduces the length of

INM interval for K� ¼ 10, which can be explained with

the help of the overall heat and solute transfer profile.

As demonstrated in Fig. 7, for high as well as low

permeable media, variation of Nu is negligible com-

pare to Sh, and Sh falls drastically as D� is increased

beyond the unity leading to a fall of solutal buoyancy

force.

Fig. 8. Comparison between the numerical (dashed line) and analytical (solid line) solutions of temperature and concentration along:

(a) and (b) x ¼ 0, (c) and (d) y ¼ 0 for A ¼ 6, N ¼ 0:6, Le ¼ 20, RaT ¼ 100, K� ¼ 5, h ¼ 60�, a� ¼ 5 and D� ¼ 5.
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4. Flow oscillations

4.1. Numerical technique

The governing partial differential equations (8)–(10),

along with hydrodynamic thermal and solutal boundary

conditions, are solved by the spectral element method

(SEM). In the spectral element discretization, the com-

putational domain is broken into a number of elements,

and within each element the dependent variable is rep-

resented as a high-order Lagrangian interpolant in terms

of Chebyshev polynomials, the coefficients of which are

related to the function values at the Gauss–Lobatto

Chebyshev collocation points. The main advantage of

this method is (i) great precision; actually, the approxi-

mation error size is only limited by the regularity of the

exact solution, (ii) flexibility in handling complex ge-

ometry. The details of this technique and its implication

can be found elsewhere [26,27]. The governing equations

(9) and (10) are transient, non-linear, coupled and are

discritized by a semi-implicit scheme in which a first-

order finite-difference approximation with time-step Dt,
is used for the time derivative and the Laplacian term

is treated implicitly using unknown values at time step

nþ 1. All other terms are treated explicitly using known

values at time step n. The time-discritized form of the

resulting equations is given by a Helmholtz equation of

the type

r2fðnþ1Þ � k2
ff

ðnþ1Þ ¼ f ðnÞf ; ð45Þ

where f may represent any one of the fundamental

variables. Both terms on the left side of Eq. (45) contain

unknown values of f at the new time-step ðnþ 1Þ, while
the forcing function ff on the right hand side is evalu-

ated using previous values. In the case of momentum

equation (8), such a direct transient term does not exist;

therefore the corresponding Helmholtz equation is re-

duced to a simple Poisson equation. The Helmholtz

equations for momentum, energy, and concentration are

explicitly given in Table 2. At each time step and for

each equation, the corresponding Helmholtz equation is

solved by the SEM. A brief description of the solution

procedure is given below.

In the beginning, initial values (see Eq. (13)) of

temperature, concentration, stream-function and veloc-

ities are taken. Next, the energy equation is solved for

ðnþ 1Þth time-step and is used to find the concentration

Table 3

Variation of upper and lower limits of INO (buoyancy ratio interval in which permanent oscillation exists) with different anisotropic

parameters for A ¼ 5, RaT ¼ 100=N and Le ¼ 10 (from numerical solutions)

K� h a� D� INO

Nlower Nupper

1 0.2 60� 1 1 < 1:25 > 1:6666

2 0.5 60� 1 1 1.2 1.85

3 0.5 75� 1 1 < 1:25 > 1:6666

4 0.5 90� 1 1 < 1:25 > 1:6666

5 1 60� 1 1 1.25 1.6666

6 2.5 60� 1 1 < 1:25 1.5666

7 2.5 75� 1 1 < 1:25 1.5666

8 2.5 90� 1 1 < 1:25 1.616

9 3 60� 1 1 < 1:25 1.4666

10 3 75� 1 1 1.3666 1.5166

11 3 90� 1 1 < 1:25 1.5166

12 3 60� 10 1 0.95 1.5166

13 3 60� 1 10 Nil Nil

14 3 75� 10 10 Nil Nil

15 3 90� 10 10 Nil Nil

16 5 15� 1 1 1.05 1.4166

17 5 45� 1 1 0.95 1.3166

18 5 60� 1 1 1 1.2666

19 5 75� 1 1 1 1.3166

20 5 90� 1 1 1.05 1.3166

21 10 60� 1 1 Nil Nil

22 10 75� 1 1 Nil Nil

23 10 90� 1 1 Nil Nil
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field at ðnþ 1Þth time-step. Following this, the mo-

mentum equation is solved iteratively at ðnþ 1Þth time-

step. Velocity components can now be calculated from

the stream function at the current time-step. Finally, the

solutions are assumed to have reached steady-state when

the criterion

Drms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNTotal

i¼1 ½fnþ1
i � fni 


2

NTotal

s
< �Dt; ð46Þ

is satisfied.

For the cases studied here, the steady-state condi-

tion was ensured by choosing Drms < �Dt (see Eq. (46))

with � ¼ 10�4 and Dt6 10�4. The time-steps and the

number of collocation grid points per element are found

via numerical experiments.

4.2. Verification of the numerical results

Extensive numerical studies have been carried out to

investigate the time dependent and steady-state behavior

of the system under consideration. Comparison between

numerical and analytical results at the center lines (i.e. at

x ¼ 0 and y ¼ 0Þ have been shown in Fig. 8(a)–(d) for

K� ¼ 10 and A ¼ 6. From the figure it can be concluded

that analytical results are well matched with numerical

results except at the vicinity of top and bottom points of

the center line of cavity. These are basically the end ef-

fects. It has been observed that for relatively low per-

meability ratio case the aspect ratio has to be large

enough to give qualitatively good agreement with ana-

lytical results.

4.3. Impact of anisotropy on flow oscillation

The main goal of our numerical study is to investi-

gate the effect of anisotropy on the unsteady flow and

existence of oscillation. When media anisotropy is taken

into account, the number of governing flow parameters

increases drastically compared to an isotropic medium.

In the present case, the parameters are K�; h; a�, and D�.

In addition, the problem depends on parameters such as

aspect ratio A, Rayleigh number RaT and Lewis number

Le. A parametric study of all these quantities would be

rather tedious. Therefore, we shall focus on the set

A ¼ 5;RaT ¼ 100=N and Le ¼ 10 along with buoyancy

Table 4

Variation of upper and lower limits of INM with different anisotropic parameters for RaT ¼ 100=N and Le ¼ 10 (from analytical so-

lutions)

K� h a� D� INM

Nlower Nupper

1 0.2 60� 1 1 0.8 2.4

2 0.5 60� 1 1 0.85 2.3

3 0.5 75� 1 1 0.8 2.4

4 0.5 90� 1 1 0.8 2.4

5 1 60� 1 1 0.5 2.25

6 2.5 60� 1 1 0.8 2.4

7 2.5 75� 1 1 0.4 2.35

8 2.5 90� 1 1 0.4 2.35

9 3 60� 1 1 0.9 2.35

10 3 75� 1 1 0.4 2.3

11 3 90� 1 1 0.75 2.25

12 3 60� 1 10 0.15 2.5

13 3 60� 10 1 1.1 1.35

14 3 75� 10 10 0.6 1.55

15 3 90� 10 10 0.5 1.35

16 5 15� 1 1 0.4 2.35

17 5 45� 1 1 0.4 2.7

18 5 60� 1 1 0.75 2.35

19 5 75� 1 1 0.6 2.45

20 5 90� 1 1 0.6 2.5

21 10 60� 1 1 0.55 2.45

22 10 75� 1 1 0.75 2.65

23 10 90� 1 1 0.6 2.65
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ratio interval of INO ¼ ½1:251:66
, in which existence of

oscillation for an isotropic porous medium is known [8].

Table 3 shows the effect of different anisotropic param-

eters K�, h, a�, and D� on the existence of oscillation.

Fig. 9. The time evaluation of: (a) streamlines, (b) isotherms, and (c) isohalines during a period of oscillation for A ¼ 5, N ¼ 1:25,

Le ¼ 10, RaT ¼ 80, K� ¼ 3, h ¼ 60�, a� ¼ 1 and D� ¼ 1.
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It can be concluded from Table 3 that, based on the

magnitude of the permeability ratio, INO may be re-

duced, extended, or shifted. Depending on the other

parameters, reasonably high permeability ratio can make

the system completely free of oscillation, and, on the

other hand, low permeability ratio can extend the

length of INO interval. Based on the same argument

given in Section 3.3.3, one can explain the above find-

ings. Further it was found that the period of length is

affected by the choice of anisotropic parameters, e.g.,

high permeability media ðK� ¼ 0:5Þ provides a lower

period length (0.3) than that (0.75) for a low permeable

medium ðK� ¼ 3Þ. Table 3 shows that similar to INM
interval, for K� > 1, also the maximum length of INO
interval is attained at h ¼ 45�. A further interesting

result shown in Table 3 is that anisotropic thermal ða�Þ
as well as solutal diffusivity ðD�Þ play a vital role on the

enhancement or reduction of the oscillation in the me-

dia, which has been also seen in the case of existence of

multiple steady-state solution in Section 3.3.5. For the

sake of comparison, the intervals of existence of multi-

solutions ðINM Þ have been displayed in Table 4 for the

same parameters combinations of Table 3. An inter-

esting result to be pointed out is that in all cases

calculated, the interval of buoyancy ratio in which

permanent oscillation exists seems to be a subset of the

same interval for occurrence of multiple solution.

4.4. Pattern periodicity

During a period of oscillation, streamlines and

contours of temperature as well as concentration for

K� ¼ 3 are given in Fig. 9(a)–(c) when other parameters

N ¼ 1:25, A ¼ 5, D� ¼ 1, a� ¼ 1, Le ¼ 10, and RaT ¼ 80

are kept constant. Similar to isotropic system, here

also, the entire flow rotation is in the clockwise direc-

tion. There are two distinct types of streamlines: (i)

those which are parallel and cover almost the whole

height of the cavity, which remain in the flow field at

all times, and (ii) those, which are inside the lower and

upper core regions of cavity, and cover half of it (see

Fig. 9(a)). The latter ones appear and disappear peri-

odically. Because of the clockwise rotation of the sep-

arated cells at the center, they reduce their strength

mutually. As a consequence, the blocking effect of ver-

tical stratification reduces, which can be seen by com-

paring temperature and concentration profiles in Fig.

9(b) and (c) at t ¼ 14:55 and 14.85. It allows the

convective cell to extend its vertical span towards the

cavity center and merge with the uni-cellular flow pat-

tern (see Fig. 9(a)). From this uni-cellular state, sepa-

ration process sets in again. This continues for a while

and finally reaches the bi-cellular state. This toggling

between uni-cellular and bi-cellular states goes on with

time. Similar observations were made by Alavyoon et al.

[8].

5. Conclusions

A study is made of natural convection by combined

heat and mass transfer in a vertical porous cavity ex-

posed to constant but opposing heat and mass fluxes.

The porous medium is assumed to be thermally, solu-

tally and hydrodynamically anisotropic with the princi-

pal axes of anisotropic permeability inclined with respect

to normal horizontal and vertical coordinate system. An

analytical solution, valid for high aspect ratio, and based

on parallel flow approximation, is presented. Numerical

simulation shows the validation of the above analytical

solution for a reasonably good range of anisotropic

parameters. Following remarks can be made from the

detailed results of unsteady flow, existence of oscillation,

existence of unique and multiple steady-state solution.

Through the present analysis, a very important fea-

ture of the flow problem in form of a correlation be-

tween INM and INO could be found. For the range of

parameters studied, the interval of buoyancy ratio for

the existence of permanent oscillation turned to be a

subset of the same interval in which multiple solutions

exist.

Further, it was observed that a small rotation of the

permeability tensor makes a significant change in the

strength of flow as well as pattern of temperature and

concentration profiles. The range of INM and INO be-

comes maximum at h ¼ 45�. Both thermal as well as

solutal diffusivity ratio play significant role on INM and

INO. Overall, the heat and mass follow complex pattern

depending on the interaction between the diffusion co-

efficients and buoyancy ratio. The local direction of the

flow changes due to the variation in the extent of the

thermal and concentration layers, the opposite buoyant

mechanism, and the anisotropic property of the me-

dium.
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Appendix A

To obtain an analytical solution for the steady-state

problem (Eqs. (15)–(17)), following integral conditions

have been assumed.

First, mass is conserved along any transversal section:Z 1

�1

uðyÞdy ¼ 0; ðA:1Þ
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Second, IC and IT are centro-symmetric: because no

chemical reactions, no mass, and no thermal sources are

considered here, the conservation of the total amount of

solute and heat leads toZ A

�A

Z 1

�1

/pCdy ¼ 2A/p

Z 1

�1

ICðyÞdy ¼ 0; ðA:2Þ

Z A

�A

Z 1

�1

rT dy ¼ 2Ar
Z 1

�1

IT ðyÞdy ¼ 0: ðA:3Þ

Finally, balance between convective and diffusive trans-

port of enthalpy and solute at any arbitrary cross section

is ensured: For a steady-state situation, Eq. (9) yields

r 
 ðVT � Lea 
 rT Þ ¼ 0; ðA:4Þ

which reduces toZ 1

�1

ðVT � Lea 
 rT Þ 
 Qdy ¼ 0: ðA:5Þ

Upon integrating over the control volume V (shown in

Fig. 10), applying Gauss’ theorem, and using boundary

conditions (11) and (12). Substituting T ¼ ST xþ IT ðyÞ,
V¼ð0; uÞT, and using Eqs. (A.1), and (A.5) can be

simplified toZ 1

�1

uðyÞIT ðyÞdy � 2ST Lea� ¼ 0: ðA:6Þ

Physically it interprets that at steady-state, the net dif-

fusive and convective transport of enthalpy through any

horizontal cross-section of the cavity balance each other

exactly (see [28]). In likewise manner, one obtains for

concentration

Z 1

�1

uðyÞICðyÞdy � 2SCD� ¼ 0: ðA:7Þ
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